World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Performance prediction of bended radio-frequency capacitors and inductors on plastic substrates using artificial neural network

    https://doi.org/10.1142/S0217984921502882Cited by:0 (Source: Crossref)

    Flexible radio-frequency (RF) capacitors and inductors on the plastic substrates have been fabricated and characterized under mechanical bending conditions. A novel method to predict the RF performance for them on different bending states is demonstrated. Artificial neural network (ANN) shows good modeling accuracy for the flexible RF passive components with bending strains from dc to resonant frequency (13/213/2 GHz for the capacitor/inductor). More importantly, the automatically generated ANN model, with no need of repeatedly tuning the model parameters, has demonstrated the ability to predict the RF responses for the flexible capacitors and inductors under arbitrary bending conditions with only a few sets of experimental data. Once established, this model can automatically learn the structure of the input date and predict the actual results on specific bending state which can provide an original method to measure the performance for flexible electronics on even extreme bent radius. The ANN model indicates good potential for accurate design, characterization and optimization of the high-performance flexible electronics.