World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Analysis of the attention to COVID-19 epidemic based on visibility graph network

    https://doi.org/10.1142/S0217984921503164Cited by:7 (Source: Crossref)

    Most of the existing researches on public health events focus on the number and duration of events in a year or month, which are carried out by regression equation. COVID-19 epidemic, which was discovered in Wuhan, Hubei Province, quickly spread to the whole country, and then appeared as a global public health event. During the epidemic period, Chinese netizens inquired about the dynamics of COVID-19 epidemic through Baidu search platform, and learned about relevant epidemic prevention information. These groups’ search behavior data not only reflect people’s attention to COVID-19 epidemic, but also contain the stage characteristics and evolution trend of COVID-19 epidemic. Therefore, the time, space and attribute laws of propagation of COVID-19 epidemic can be discovered by deeply mining more information in the time series data of search behavior. In this study, it is found that transforming time series data into visibility network through the principle of visibility algorithm can dig more hidden information in time series data, which may help us fully understand the attention to COVID-19 epidemic in Chinese provinces and cities, and evaluate the deficiencies of early warning and prevention of major epidemics. What’s more, it will improve the ability to cope with public health crisis and social decision-making level.