World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Liquid phase stratification induced by large temperature gradient during spinodal decomposition in Fe–Cr alloys: A phase-field study

    https://doi.org/10.1142/S0217984921503747Cited by:4 (Source: Crossref)

    The spinodal decomposition in Fe-40at.%Cr binary alloy is numerically studied by implementing the phase-field model based on Cahn–Hilliard equation. Effects of different temperature gradients on the solute distributing characteristics during the spinodal decomposition are investigated. In the system with a temperature gradient, the phase decomposition happens gradually from low temperature to high temperature, and a metastable stratification is achieved with specified temperature distribution. The critical temperature and corresponding temperature gradient are specified for the obvious solute stratification in the binary Fe–Cr alloy. The kinetics of the solute diffusion during the spinodal decomposition is discussed to reveal the liquid phase stratification induced by the anisotropic diffusion with the nonuniform temperature field. Therefore, tailoring the heat treatment during the spinodal decomposition in Fe–Cr binary alloys might be an efficient way to obtain nanometer coherent microstructures with specified solute distribution.