Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Bäcklund transformations, Lax pair and solutions of a Sharma-Tasso-Olver-Burgers equation for the nonlinear dispersive waves

    https://doi.org/10.1142/S0217984921504212Cited by:41 (Source: Crossref)

    Burgers-type equations are considered as the models of certain phenomena in plasma astrophysics, ocean dynamics, atmospheric science and so on. In this paper, a Sharma-Tasso-Olver-Burgers equation for the nonlinear dispersive waves is studied. Based on the Painlevé-Bäcklund equations, one auto-Bäcklund transformation and two hetero-Bäcklund transformations are derived. Motivated by the Burgers hierarchy, a Lax pair is given. Via two hetero-Bäcklund transformations with different constant seed solutions, we find some multiple-kink solutions, complex periodic solutions, hybrid solutions composed of the lump, periodic and multiple kink waves. Then we discuss the influence of the coefficients of the above equation on such solutions. Via the auto-Bäcklund transformation with the nontrivial seed solutions, we obtain certain lump-type solutions, kink-type solutions and recurrence relation of the above equation.