World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Analytical solution of nonlinear differential equations two oscillators mechanism using Akbari–Ganji method

    https://doi.org/10.1142/S0217984921504625Cited by:30 (Source: Crossref)

    In the last decade, many potent analytical methods have been utilized to find the approximate solution of nonlinear differential equations. Some of these methods are energy balance method (EBM), homotopy perturbation method (HPM), variational iteration method (VIM), amplitude frequency formulation (AFF), and max–min approach (MMA). Besides the methods mentioned above, the Akbari–Ganji method (AGM) is a highly efficient analytical method to solve a wide range of nonlinear equations, including heat transfer, mass transfer, and vibration problems. In this study, it was constructed the approximate analytic solution for movement of two mechanical oscillators by employing the AGM. In the derived analytical method, both oscillator motion equations and the sensitivity analysis of the frequency were included. The AGM was validated through comparison against Runge–Kutta fourth-order numerical method and an excellent agreement was achieved. Based on the results, the highest sensitivity of the oscillation frequency is related to the mass. As α and β increase, the slope of the system velocity and acceleration will increase.

    References

    Remember to check out the Most Cited Articles!

    Boost your collection with these New Books in Condensed Matter Physics today!