Numerical prediction of thermal stress–strain behavior on the wire-directed energy deposition additive manufacturing for automotive component
Abstract
Wire-directed energy deposition (wire-DED) is used to create a shape in a layer-by-layer manner by depositing a consumable welding wire, where a welding arc is the source of heat. This technology can be used to fabricate large components with higher deposition rates compared to other 3D metal printing methods. Despite these benefits, the components of wire-DED are affected by heat distortion and residual stress. Therefore, the prediction of deformation before fabrication using wire-DED is essential for determining the range of machining for the final products. In this study, the deformation and time required were evaluated using various simulation models of wire-DED.