Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Ab-Initio study of dopamine, absorbic acid and uric acid adsorption on graphene and InBi monolayer with effects of charging and green’s function method

    https://doi.org/10.1142/S021798492350094XCited by:3 (Source: Crossref)

    Dopamine (DA) is a crucial molecule for the central nervous system, and the ability to detect it in samples containing molecules such as Ascorbic Acid (AA) and Uric Acid (UA) could facilitate early diagnosis of related disorders. In this work, the interaction of DA, UA, and AA with InBi and Graphene (GR) monolayers under charging was investigated using Density Functional Theory (DFT) calculations with van der Waals (vdW) correction and nonequilibrium Green’s function method for the first time. According to our calculations, the most influential factor in the interaction was observed to arise from the ππ and π–O interaction between molecules and surfaces. It has been concluded that InBi is a better adsorbent than GR for DA, AA, and UA, where the adsorption energies from the highest to lowest were found as UA>AA>DA. Furthermore, the charge transfers between molecules and surfaces were investigated, and it was demonstrated that the molecules on GR act as charge acceptors. In contrast, for InBi–molecule systems, electronic drift from molecules to the InBi surface was observed. The Partial Density of States (P-DOS) plots were examined, and the results were discussed in detail. The consequences of adding/removing charges to/from the systems were also examined, and it was shown that removing Q=2e/cell from the GR–molecule systems effectively detected DA molecules from the others. Charging also broke the topological state of InBi, leading to semiconductor to metal, except for the Q=2e/cell case. Finally, the changes in transmittance due to adsorption were simulated, and our results show that InBi is a possible candidate for DA sequencing biosensor applications compared to GR. The findings of this work provide a theoretical framework for the development and creation of highly precise biodevices and biosensors.