WDM DEMULTIPLEXING BY USING SURFACE PLASMON POLARITONS
Abstract
The volume of telecommunications traffic keeps growing at an exponential rate. The optical-communications industry, the linchpin of modern telecommunications, in its quest of keeping up with this growth simply must increase the number of wavelengths in the wavelength-division multiplexing (WDM) configuration. The result of this increase would mean, too, that the number of transmitters and receivers that could be placed on one board would increase as well; hence, the density of their packaging would come to micro- and even nano-scale. At the receiver end, which we will consider in this paper, manufacturers are now able to fabricate an array of photodiodes (PDs) on a single wafer, reducing the size of an individual PD to hundreds of nm. The main obstacle in approaching this scale from a communications link point of view, however, is the diffraction limit. One possible solution to this problem is the use of plasmonics. This paper discusses a possible approach to using surface plasmon polaritons (SPPs) for WDM demultiplexing, presents a possible scheme to implement this approach, and offers our analysis of this scheme along with suggestions for future developments.
Remember to check out the Most Cited Articles! |
---|
Check out these Notable Titles in Antennas |