Characteristics assessment of TFT through 2D simulation under different material and structural configurations
Abstract
This paper presents a performance analysis of indium-gallium-zinc-oxide (IGZO)- and pentacene-based top-gate-top-contact (TGTC) and bottom-gate-top-contact (BGTC) thin film transistors (TFTs). Extensive simulation has been performed to assess the performances in terms of threshold voltage, subthreshold slope, on-off current ratio, mobility, and figure of merit (FoM). Results indicate a trade-off between mobility and current ratio with respect to the permittivity of the dielectric layer, where tantalum oxide (Ta2O5) provides the optimum result in terms of FoM. The mobility of IGZO is significantly higher for both structures, whereas the current ratio for IGZO is higher than pentacene in the BGTC configuration. Comparing the structural configurations, Ta2O5-IGZO-based BGTC achieves 5.92× and 41.8× better mobility and current ratio, respectively, over TGTC structures. The threshold voltage of IGZO-based TFT is observed to increase with the permittivity of the dielectric in TGTC configuration but decrease in BGTC configuration. Meanwhile, the increase in oxide and active layer thicknesses causes a decrease in the threshold voltage. Moreover, both mobility and current ratio improve with a decrease in oxide or active layer thickness. Maximum mobility of 32.30cm2/Vs and a maximum current ratio of 7.54E+08 are achieved for Ta2O5-IGZO-based BGTC TFT with 10μm channel thickness and 5μm oxide thickness.