World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Light management of solar cells by implementation of nano/microstructures

    https://doi.org/10.1142/S0217984924420193Cited by:0 (Source: Crossref)

    Research on the improvement of the photoelectric conversion efficiency of solar cells is always the focus. In this paper, an efficient anti-reflection micro/nanostructure is proposed to improve the conversion efficiency of the solar cell. Graded effective refractive index theory is used to achieve the anti-reflection effect while the simulation model is established by FDTD. A specific periodic nanostructure is obtained, which can achieve a good anti-reflection effect. According to the simulation model, the reflectivity of the solar cell is reduced by 0.85% and the transmittance is increased by 0.85% in the band range of 200 nm to 1000 nm. Specifically, high anti-reflection phenomena are obtained in the band range of ultraviolet and blue light, in which the reflectivity is reduced by 1.56% and the transmittance is increased by 1.55%. Based on the simulation results, the array nanostructure is produced by etching the self-assembled polystyrene (PS) microspheres. Finally, the required structure is formed on the silicon wafer by nanoimprinting and etching technology. The reflectivity of 2.8% is obtained on silicon, which can potentially increase the opto-electrical performance of the solar cell.