World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S0217984924500593Cited by:0 (Source: Crossref)

This work is about the investigation of the flow of a micropolar nanoliquid over a stretching surface, taking into account the effects of thermal radiation, thermophoresis, and Brownian motion. The study focuses on the impact of these factors on heat and mass transfer rates, with the assumption that the Newtonian heat impact dominates. The homotropy approach is used to generate non-dimensional transformational parameters, which are then used to create a system of nonlinear differential equations. The study includes charts and tables that define transfer rates based on various parameters, and the results suggest that increased radiance levels and Nb parameters lead to improvements in heat and mass convection. The graphics used in the study are accurate and consistent with previous research in the field. Overall, this research provides insights into the complex dynamics of micropolar nanoliquid flow and the factors that impact heat and mass transfer in this system.