World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Atomic physics-inspired atom search optimization heuristics integrated with chaotic maps for identification of electro-hydraulic actuator systems

    https://doi.org/10.1142/S0217984924503081Cited by:8 (Source: Crossref)

    Electro-hydraulic actuator system (EHAS) has imposed a challenge in the research community for accurate mathematical modeling and identification due to non-linearities. In this paper, autoregressive exogenous (ARX) structure is used for EHAS modeling and identification is performed by exploiting the competency of atomic physics-based chaotic atom search optimization (CASO) that adapts ten chaotic maps (Chebyshev, Circle, Gauss, Iterative, Logistic, Piecewise, Sine, Singer, Sinusoidal and Tent) in position update of atom search optimization (ASO). The fitness/merit function of the EHAS model is developed in mean-square error (MSE) sense between desired and approximated values. Simulations and analysis show that ASO with a chaotic logistic map (CASO5) performs better than the ASO and its other chaotic variants, as well as other recently introduced metaheuristics for diverse variations in the system model. Statistics based on MSE, learning plots, results of autonomous trials and average fitness analyses verify the consistency and reliability of the CASO5 for the identification of the EHAS model.