World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
SPECIAL ISSUE: Tools and Techniques of Artificial Intelligence; dited by I. F. Russell & A. N. KumarNo Access

KNOWLEDGE-BASED SELF-ADAPTATION IN EVOLUTIONARY SEARCH

    https://doi.org/10.1142/S0218001400000040Cited by:5 (Source: Crossref)

    Self-adaptation has been frequently employed in evolutionary computation. Angeline1 defined three distinct adaptive levels which are: population, individual and component levels. Cultural Algorithms have been shown to provide a framework in which to model self-adaptation at each of these levels. Here, we examine the role that different forms of knowledge can play in the self-adaptation process at the population level for evolution-based function optimizers. In particular, we compare the relative performance of normative and situational knowledge in guiding the search process. An acceptance function using a fuzzy inference engine is employed to select acceptable individuals for forming the generalized knowledge in the belief space. Evolutionary programming is used to implement the population space. The results suggest that the use of a cultural framework can produce substantial performance improvements in execution time and accuracy for a given set of function minimization problems over population-only evolutionary systems.