World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
SPECIAL ISSUE: Hidden Markov Models in Vision; Edited by H. Bunke and T. CaelliNo Access

AN INTRODUCTION TO HIDDEN MARKOV MODELS AND BAYESIAN NETWORKS

    https://doi.org/10.1142/S0218001401000836Cited by:400 (Source: Crossref)

    We provide a tutorial on learning and inference in hidden Markov models in the context of the recent literature on Bayesian networks. This perspective makes it possible to consider novel generalizations of hidden Markov models with multiple hidden state variables, multiscale representations, and mixed discrete and continuous variables. Although exact inference in these generalizations is usually intractable, one can use approximate inference algorithms such as Markov chain sampling and variational methods. We describe how such methods are applied to these generalized hidden Markov models. We conclude this review with a discussion of Bayesian methods for model selection in generalized HMMs.