TEXT CATEGORIZATION IN AN INTELLIGENT AGENT FOR FILTERING INFORMATION ON THE WEB
Abstract
This paper presents a text categorization system, capable of analyzing HTML/text documents collected from the Web. The system is a component of a more extensive intelligent agent for adaptive information filtering on the Web. It is based on a hybrid case-based architecture, where two multilayer perceptrons are integrated into a case-based reasoner. An empirical evaluation of the system was performed by means of a confidence interval technique. The experimental results obtained are encouraging and support the choice of a hybrid case-based approach to text categorization.