World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
SPECIAL ISSUE: Support Vector Machines for Computer Vision and Pattern Recognition; Edited by S.-W. Lee and A. VerriNo Access

KERNEL WHITENING FOR ONE-CLASS CLASSIFICATION

    https://doi.org/10.1142/S021800140300240XCited by:42 (Source: Crossref)

    In one-class classification one tries to describe a class of target data and to distinguish it from all other possible outlier objects. Obvious applications are areas where outliers are very diverse or very difficult or expensive to measure, such as in machine diagnostics or in medical applications. In order to have a good distinction between the target objects and the outliers, good representation of the data is essential. The performance of many one-class classifiers critically depends on the scaling of the data and is often harmed by data distributions in (nonlinear) subspaces. This paper presents a simple preprocessing method which actively tries to map the data to a spherical symmetric cluster and is almost insensitive to data distributed in subspaces. It uses techniques from Kernel PCA to rescale the data in a kernel feature space to unit variance. This transformed data can now be described very well by the Support Vector Data Description, which basically fits a hypersphere around the data. The paper presents the methods and some preliminary experimental results.