World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

REAL-TIME FACIAL POSE IDENTIFICATION WITH HIERARCHICALLY STRUCTURED ML POSE CLASSIFIER

    https://doi.org/10.1142/S0218001404003125Cited by:3 (Source: Crossref)

    Since pose-varying face images form nonlinear convex manifold in high dimensional image space, it is difficult to model their pose distribution in terms of a simple probabilistic density function. To solve this difficulty, we divide the pose space into many constituent pose classes and treat the continuous pose estimation problem as a discrete pose-class identification problem. We propose to use a hierarchically structured ML (Maximum Likelihood) pose classifiers in the reduced feature space to decrease the computation time for pose identification, where pose space is divided into several pose groups and each group consists of a number of similar neighboring poses. We use the CONDENSATION algorithm to find a newly appearing face and track the face with a variety of poses in real-time. Simulation results show that our proposed pose identification using the hierarchically structured ML pose classifiers can perform a faster pose identification than conventional pose identification using the flat structured ML pose classifiers. A real-time facial pose tracking system is built with high speed hierarchically structured ML pose classifiers.