World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

INTEGRATING GLOBAL AND LOCAL ANALYSIS OF COLOR, TEXTURE AND GEOMETRICAL INFORMATION FOR CATEGORIZING LARYNGEAL IMAGES

    https://doi.org/10.1142/S0218001406005228Cited by:9 (Source: Crossref)

    An approach to integrating the global and local kernel-based automated analysis of vocal fold images aiming to categorize laryngeal diseases is presented in this paper. The problem is treated as an image analysis and recognition task. A committee of support vector machines is employed for performing the categorization of vocal fold images into healthy, diffuse and nodular classes. Analysis of image color distribution, Gabor filtering, cooccurrence matrices, analysis of color edges, image segmentation into homogeneous regions from the image color, texture and geometry view point, analysis of the soft membership of the regions in the decision classes, the kernel principal components based feature extraction are the techniques employed for the global and local analysis of laryngeal images. Bearing in mind the high similarity of the decision classes, the correct classification rate of over 94% obtained when testing the system on 785 vocal fold images is rather encouraging.