A MULTISTAGE RULE INDUCTION ALGORITHM IN CLASSIFICATION
Abstract
The purpose of this paper is to start a conceptual investigation of approximation rule based on VPRS as a result of the certainty degree of rules in complete information system that cannot exactly express the uncertainty of those in incomplete information system, and then an efficient approximation rule induction algorithm under the rough set framework is presented. Instead of focusing on the minimal rule set, this algorithm hierarchically extracts rules in multistages from data sets to suit changing environments in learning and classification. In addition, a heuristic strategy is employed in the algorithm to improve its performance and reduce the time consumed in inducing. Experiments are carried out, and the results show that the proposed algorithm is effective in inducing rules which can enhance their adaptive capacities.