World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

POLYNOMIAL NETWORKS VERSUS OTHER TECHNIQUES IN TEXT CATEGORIZATION

    https://doi.org/10.1142/S0218001408006247Cited by:12 (Source: Crossref)

    Many techniques and algorithms for automatic text categorization had been devised and proposed in the literature. However, there is still much space for researchers in this area to improve existing algorithms or come up with new techniques for text categorization (TC). Polynomial Networks (PNs) were never used before in TC. This can be attributed to the huge datasets used in TC, as well as the technique itself which has high computational demands. In this paper, we investigate and propose using PNs in TC. The proposed PN classifier has achieved a competitive classification performance in our experiments. More importantly, this high performance is achieved in one shot training (noniteratively) and using just 0.25%–0.5% of the corpora features. Experiments are conducted on the two benchmark datasets in TC: Reuters-21578 and the 20 Newsgroups. Five well-known classifiers are experimented on the same data and feature subsets: the state-of-the-art Support Vector Machines (SVM), Logistic Regression (LR), the k-nearest-neighbor (kNN), Naive Bayes (NB), and the Radial Basis Function (RBF) networks.