World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FAST COMPUTATION OF GEOMETRIC MOMENTS AND INVARIANTS USING SCHLICK'S APPROXIMATION

    https://doi.org/10.1142/S0218001408006764Cited by:3 (Source: Crossref)

    Geometric moments have been used in several applications in the field of Computer Vision. Many techniques for fast computation of geometric moments have therefore been proposed in the recent past, but these algorithms mainly rely on properties of the moment integral such as piecewise differentiability and separability. This paper explores an alternative approach to approximating the moment kernel itself in order to get a notable improvement in computational speed. Using Schlick's approximation for the normalized kernel of geometric moments, the computational overhead could be significantly reduced and numerical stability increased. The paper also analyses the properties of the modified moment functions, and shows that the proposed method could be effectively used in all applications where normalized Cartesian moment kernels are used. Several experimental results showing the invariant characteristics of the modified moments are also presented.