World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

AN INCREMENTAL FRAMEWORK BASED ON CROSS-VALIDATION FOR ESTIMATING THE ARCHITECTURE OF A MULTILAYER PERCEPTRON

    https://doi.org/10.1142/S0218001409007132Cited by:17 (Source: Crossref)

    We define the problem of optimizing the architecture of a multilayer perceptron (MLP) as a state space search and propose the MOST (Multiple Operators using Statistical Tests) framework that incrementally modifies the structure and checks for improvement using cross-validation. We consider five variants that implement forward/backward search, using single/multiple operators and searching depth-first/breadth-first. On 44 classification and 30 regression datasets, we exhaustively search for the optimal and evaluate the goodness based on: (1) Order, the accuracy with respect to the optimal and (2) Rank, the computational complexity. We check for the effect of two resampling methods (5 × 2, ten-fold cv), four statistical tests (5 × 2 cv t, ten-fold cv t, Wilcoxon, sign) and two corrections for multiple comparisons (Bonferroni, Holm). We also compare with Dynamic Node Creation (DNC) and Cascade Correlation (CC). Our results show that: (1) On most datasets, networks with few hidden units are optimal, (2) forward searching finds simpler architectures, (3) variants using single node additions (deletions) generally stop early and get stuck in simple (complex) networks, (4) choosing the best of multiple operators finds networks closer to the optimal, (5) MOST variants generally find simpler networks having lower or comparable error rates than DNC and CC.