World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
SPECIAL ISSUE: Facial Image Processing and Analysis; Edited by M. Grgic, S. Shan, R. Lukac, H. Wechsler and M. S. BartlettNo Access

FACE AUTHENTICATION USING RECOGNITION-BY-PARTS, BOOSTING AND TRANSDUCTION

    https://doi.org/10.1142/S0218001409007193Cited by:12 (Source: Crossref)

    The paper describes an integrated recognition-by-parts architecture for reliable and robust face recognition. Reliability and robustness are characteristic of the ability to deploy full-fledged and operational biometric engines, and handling adverse image conditions that include among others uncooperative subjects, occlusion, and temporal variability, respectively. The architecture proposed is model-free and non-parametric. The conceptual framework draws support from discriminative methods using likelihood ratios. At the conceptual level it links forensics and biometrics, while at the implementation level it links the Bayesian framework and statistical learning theory (SLT). Layered categorization starts with face detection using implicit rather than explicit segmentation. It proceeds with face authentication that involves feature selection of local patch instances including dimensionality reduction, exemplar-based clustering of patches into parts, and data fusion for matching using boosting driven by parts that play the role of weak-learners. Face authentication shares the same implementation with face detection. The implementation, driven by transduction, employs proximity and typicality (ranking) realized using strangeness and p-values, respectively. The feasibility and reliability of the proposed architecture are illustrated using FRGC data. The paper concludes with suggestions for augmenting and enhancing the scope and utility of the proposed architecture.