World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

HYPERSPHERICAL PROTOTYPES FOR PATTERN CLASSIFICATION

    https://doi.org/10.1142/S0218001409007740Cited by:1 (Source: Crossref)

    The nearest neighbor method is one of the most widely used pattern classification methods. However its major drawback in practice is the curse of dimensionality. In this paper, we propose a new method to alleviate this problem significantly. In this method, we attempt to cover the training patterns of each class with a number of hyperspheres. The method attempts to design hyperspheres as compact as possible, and we pose this as a quadratic optimization problem. We performed several simulation experiments, and found that the proposed approach results in considerable speed-up over the k-nearest-neighbor method while maintaining the same level of accuray. It also significantly beats other prototype classification methods (Like LVQ, RCE and CCCD) in most performance aspects.