World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

TEXTURE-BASED FINGERPRINT RECOGNITION COMBINING DIRECTIONAL FILTER BANKS AND WAVELET

    https://doi.org/10.1142/S0218001412560125Cited by:5 (Source: Crossref)

    To design an effective and robust fingerprint recognition method is still an open issue. Some texture-based methods such as directional energy method and wavelet method are available nowadays. However, directional energy method is insufficient to capture the detail information of fingerprint and it is also improper to directly use wavelet method to extract the feature since the complex and rich edge information of fingerprint. In this work we propose a texture-based method called DFB-Wavelet for fingerprint recognition via combining directional filter banks (DFB) and wavelet. The region of interest (ROI) composed of nonoverlapping square blocks, is decomposed into eight directions by employing DFB. Wavelet signatures are calculated as the features of a fingerprint image from each directional subband of DFB. The feature matching is performed on the global normalized Euclidean distance between the input fingerprint features and the templates features. Experimental results show that DFB-Wavelet method has the higher accuracy compared to the traditional texture-based methods.