World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

RADIAL-BASED SIGNAL-PROCESSING COMBINED WITH METHODS OF MACHINE LEARNING

    https://doi.org/10.1142/S0218001413500183Cited by:0 (Source: Crossref)

    The present paper describes a novel approach to performing feature extraction and classification in possibly layered circular structures, as seen in two-dimensional cutting planes of three-dimensional tube-shaped objects. The algorithm can therefore be used to analyze histological specimens of blood vessels as well as intravascular ultrasound (IVUS) datasets. The approach uses a radial signal-based extraction of textural features in combination with methods of machine learning to integrate a priori domain knowledge. The algorithm in principle solves a two-dimensional classification problem that is reduced to parallel viable time series analysis. A multiscale approach hereby determines a feature vector for each analysis using either a Wavelet-transform (WT) or a S-transform (ST). The classification is done by methods of machine learning — here support vector machines. A modified marching squares algorithm extracts the polygonal segments for the two-dimensional classification. The accuracy is above 80% even in datasets with a considerable quantity of artifacts, while the mean accuracy is above 90%. The benefit of the approach therefore mainly lies in its robustness, efficient calculation, and the integration of domain knowledge.