RADIAL-BASED SIGNAL-PROCESSING COMBINED WITH METHODS OF MACHINE LEARNING
Abstract
The present paper describes a novel approach to performing feature extraction and classification in possibly layered circular structures, as seen in two-dimensional cutting planes of three-dimensional tube-shaped objects. The algorithm can therefore be used to analyze histological specimens of blood vessels as well as intravascular ultrasound (IVUS) datasets. The approach uses a radial signal-based extraction of textural features in combination with methods of machine learning to integrate a priori domain knowledge. The algorithm in principle solves a two-dimensional classification problem that is reduced to parallel viable time series analysis. A multiscale approach hereby determines a feature vector for each analysis using either a Wavelet-transform (WT) or a S-transform (ST). The classification is done by methods of machine learning — here support vector machines. A modified marching squares algorithm extracts the polygonal segments for the two-dimensional classification. The accuracy is above 80% even in datasets with a considerable quantity of artifacts, while the mean accuracy is above 90%. The benefit of the approach therefore mainly lies in its robustness, efficient calculation, and the integration of domain knowledge.