IRIS RECOGNITION USING COMBINED STATISTICAL AND CO-OCCURRENCE MULTI-RESOLUTIONAL FEATURES
Abstract
Iris recognition is one of the most reliable personal identification methods. This paper presents a novel algorithm for iris recognition encompassing iris segmentation, fusion of statistical and co-occurrence features extracted from the curvelet and ridgelet transformed images. In this work, the pupil and iris boundaries are detected by using the equation of circle from three points on its circumference. Using Canny edge detection, the iris radius value is empirically chosen based on rigorous experimentation. Eyelash removal is done by using a horizontal 1-D rank filter. Iris normalization is done by mapping the detected iris region from the polar domain to the rectangular domain and the multi-resolution transforms such as curvelet and ridgelet transforms are applied for multi-resolutional feature extraction. The classification is done using Manhattan distance (Md) and multiclass classifier with logistic function and the two results are compared. Here, the benchmark database CASIA-IRIS-V3 (Interval) is used for identification and recognition. It is observed that the ridgelet transform increases the iris recognition rate.