World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

IRIS RECOGNITION USING COMBINED STATISTICAL AND CO-OCCURRENCE MULTI-RESOLUTIONAL FEATURES

    https://doi.org/10.1142/S0218001413560016Cited by:3 (Source: Crossref)

    Iris recognition is one of the most reliable personal identification methods. This paper presents a novel algorithm for iris recognition encompassing iris segmentation, fusion of statistical and co-occurrence features extracted from the curvelet and ridgelet transformed images. In this work, the pupil and iris boundaries are detected by using the equation of circle from three points on its circumference. Using Canny edge detection, the iris radius value is empirically chosen based on rigorous experimentation. Eyelash removal is done by using a horizontal 1-D rank filter. Iris normalization is done by mapping the detected iris region from the polar domain to the rectangular domain and the multi-resolution transforms such as curvelet and ridgelet transforms are applied for multi-resolutional feature extraction. The classification is done using Manhattan distance (Md) and multiclass classifier with logistic function and the two results are compared. Here, the benchmark database CASIA-IRIS-V3 (Interval) is used for identification and recognition. It is observed that the ridgelet transform increases the iris recognition rate.