MINIMUM SPANNING TREE (MST) BASED TECHNIQUES FOR GENERATION OF CANCELABLE FINGERPRINT TEMPLATES
Abstract
The biometric community is faced with the difficult problem of protection of the original biometric template. One way of doing this is using a cancelable biometric method, which transforms original biometric template in a noninvertible way and uses the transformed template to verify a person's identity. In this paper, we propose two novel representation methods for fingerprint minutiae. Proposed methods based on this representation are simple to generate cancelable templates without requiring pre-alignment of the fingerprints. The main idea is to generate a minimal spanning tree (MST) for fingerprint minutiae in a three-dimensional (3D) feature space. The chain code representation for a generated MST in a two-dimensional (2D) feature space is proposed. A bit string is then generated by mapping the chain code into 2D array. The fingerprint minutiae based upon the Cartesian system is dealt with in Method-1, while the boundary representation of the minutiae is dealt with in Method-2. The proposed methods are evaluated using FVC2004 and FVC2002 databases and the performance is better compared to existing methods [C. Lee and J. Kim, J. Netw. Comput. Appl.33(3) (2010) 236–246; S. Wang and J. Hu, Pattern Recogn.45 (2012) 4129–4137; S. Wang and J. Hu, Pattern Recogn.47(3) (2014) 1321–1329; Z. Jin, A. B. J. Teoh, T. S. Ong and C. Tee, Expert Syst. Appl.39 (2012) 6157–6167; P. Das, K. Karthik and B. C. Garai, Pattern Recogn.45(9) (2012) 3373–3388; A. B. J. Teoh, D. C. L. Ngo and A. Goh, Pattern Recogn.37(11) (2004) 2245–2255.]