World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Feature Selection Method for Improved Clonal Algorithm Towards Intrusion Detection

    https://doi.org/10.1142/S0218001416590138Cited by:7 (Source: Crossref)

    Intrusion detection is a kind of security mechanism which is used to detect attacks and intrusion behaviors. Due to the low accuracy and the high false positive rate of the existing clonal selection algorithms applied to intrusion detection, in this paper, we proposed a feature selection method for improved clonal algorithm. The improved method detects the intrusion behavior by selecting the best individual overall and clones them. Experimental results show that the feature selection algorithm is better than the traditional feature selection algorithm on the different classifiers, and it is shown that the final detection results are better than traditional clonal algorithm with 99.6% accuracy and 0.1% false positive rate.