World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

3D Face Recognition Based on Symbolic FDA Using SVM Classifier with Similarity and Dissimilarity Distance Measure

    https://doi.org/10.1142/S0218001417560067Cited by:5 (Source: Crossref)

    Human face images are the basis not only for person recognition, but for also identifying other attributes like gender, age, ethnicity, and emotional states of a person. Therefore, face is an important biometric identifier in the law enforcement and human–computer interaction (HCI) systems. The 3D human face recognition is emerging as a significant biometric technology. Research interest into 3D face recognition has increased during recent years due to availability of improved 3D acquisition devices and processing algorithms. A 3D face image is represented by 3D meshes or range images which contain depth information. In this paper, the objective is to propose a new 3D face recognition method based on radon transform and symbolic factorial discriminant analysis using KNN and SVM classifier with similarity and dissimilarity measures, which are applied on 3D facial range images. The experimentation is done using three publicly available databases, namely, Bhosphorus, Texas and CASIA 3D face database. The experimental results demonstrate the effectiveness of the proposed method.