Somatic Cells Recognition by Application of Gabor Feature-Based (2D)2PCA
Abstract
In this paper, we propose a novel approach of Gabor feature based on bi-directional two-dimensional principal component analysis ((2D)2PCA) for somatic cells recognition. Firstly, Gabor features of different orientations and scales are extracted by the convolution of Gabor filter bank. Secondly, dimensionality reduction of the feature space applies (2D)2PCA in both row and column. Finally, the classifier uses Support Vector Machine (SVM) to achieve our goal. The experimental results are obtained using a large set of images from different sources. The results of our proposed method are not only efficient in accuracy and speed, but also robust to illumination in bovine mastitis via optical microscopy.