World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Phase-Sensitive Decision-Directed SNR Estimator for Single-Channel Speech Enhancement

    https://doi.org/10.1142/S0218001417580034Cited by:1 (Source: Crossref)

    The a priori signal-to-noise ratio (SNR) plays an essential role in many speech enhancement systems. Most of the existing approaches to estimate the a priori SNR only exploit the amplitude spectra while making the phase neglected. Considering the fact that incorporating phase information into a speech processing system can significantly improve the speech quality, this paper proposes a phase-sensitive decision-directed (DD) approach for the a priori SNR estimate. By representing the short-time discrete Fourier transform (STFT) signal spectra geometrically in a complex plane, the proposed approach estimates the a priori SNR using both the magnitude and phase information while making no assumptions about the phase difference between clean speech and noise spectra. Objective evaluations in terms of the spectrograms, segmental SNR, log-spectral distance (LSD) and short-time objective intelligibility (STOI) measures are presented to demonstrate the superiority of the proposed approach compared to several competitive methods at different noise conditions and input SNR levels.