Computer Aided Bright Lesion Classification in Fundus Image Based on Feature Extraction
Abstract
In this paper, a hybrid approach of fundus image classification for diabetic retinopathy (DR) lesions is proposed. Laplacian eigenmaps (LE), a nonlinear dimensionality reduction (NDR) technique is applied to a high-dimensional scale invariant feature transform (SIFT) representation of fundus image for lesion classification. The applied NDR technique gives a low-dimensional intrinsic feature vector for lesion classification in fundus images. The publicly available databases are used for demonstrating the implemented strategy. The performance of applied technique can be evaluated based on sensitivity, specificity and accuracy using Support vector classifier. Compared to other feature vectors, the implemented LE-based feature vector yielded better classification performance. The accuracy obtained is 96.6% for SIFT-LE-SVM.