Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Accuracy Improvement of Indoor Real-Time Location Tracking Algorithm for Smart Supermarket Based on Ultra-Wideband

    https://doi.org/10.1142/S0218001420580045Cited by:9 (Source: Crossref)

    Collecting data like location information is an essential part of concepts like the “IoT” or “Industry 4.0”. In the case of the development of a precise localization system and an integrated navigation system, indoor location technology receives more and more attention and has become a hot research topic. Common indoor location techniques are mainly based on wireless local area network, radio frequency tag, ZigBee technology, Bluetooth technology, infrared technology and ultra-wideband (UWB). However, these techniques are vulnerable to various noise signals and indoor environments, and also the positioning accuracy is easily affected by the complicated indoor environment. We studied the problem of real-time location tracking based on UWB in an indoor environment in this paper. We have proposed a combinational filtering algorithm and an improved Two-Way Ranging (ITWR) method for indoor real-time location tracking. The simulation results prove that the real-time performance and high accuracy of the presented algorithm can improve location accuracy. The experiment shows that the combinational algorithm and ITWR method which are applied to the positioning and navigation of the smart supermarket, have achieved quiet good results in positioning accuracy. The average positioning error is less than 10cm, some of the improvements can elevate the positioning accuracy by 17.5%. UWB is a suitable method for indoor real-time location tracking and has important theoretic value and practical significance.