Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Deep Neural Network-Based Screening Model for COVID-19-Infected Patients Using Chest X-Ray Images

    https://doi.org/10.1142/S0218001421510046Cited by:83 (Source: Crossref)

    There are limited coronavirus disease 2019 (COVID-19) testing kits, therefore, development of other diagnosis approaches is desirable. The doctors generally utilize chest X-rays and Computed Tomography (CT) scans to diagnose pneumonia, lung inflammation, abscesses, and/or enlarged lymph nodes. Since COVID-19 attacks the epithelial cells that line our respiratory tract, therefore, X-ray images are utilized in this paper, to classify the patients with infected (COVID-19 +ve) and uninfected (COVID-19 ve) lungs. Almost all hospitals have X-ray imaging machines, therefore, the chest X-ray images can be used to test for COVID-19 without utilizing any kind of dedicated test kits. However, the chest X-ray-based COVID-19 classification requires a radiology expert and significant time, which is precious when COVID-19 infection is increasing at a rapid rate. Therefore, the development of an automated analysis approach is desirable to save the medical professionals’ valuable time. In this paper, a deep convolutional neural network (CNN) approach is designed and implemented. Besides, the hyper-parameters of CNN are tuned using Multi-objective Adaptive Differential Evolution (MADE). Extensive experiments are performed by considering the benchmark COVID-19 dataset. Comparative analysis reveals that the proposed technique outperforms the competitive machine learning models in terms of various performance metrics.