Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Domain Adaptation for Person Re-Identification with Part Alignment and Progressive Pseudo-Labeling

    https://doi.org/10.1142/S0218001421600144Cited by:0 (Source: Crossref)
    This article is part of the issue:

    With the recent technological advances, surveillance cameras became accessible to the general public and a huge amount of nonstructured data is being gathered. However, extracting value from this data is challenging, especially for tasks that involve human images, such as face recognition and person re-identification. Annotation of this kind of data is a challenging and expensive task. In this work, we propose a domain adaptation workflow to allow CNNs that were trained in one domain to be applied to another domain without the need for annotated target data. Our method uses AlignedReID++ as the baseline, trained using a Triplet loss with batch hard. Domain adaptation is done in an unsupervised manner by clustering unlabeled data to generate pseudo-labels in the target domain. Our results show that domain adaptation really improves the performance of the CNN when applied in the target domain.