World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Automatic Object Detection and Direction Prediction of Unmanned Vessels Based on Multiple Convolutional Neural Network Technology

    https://doi.org/10.1142/S0218001422500021Cited by:2 (Source: Crossref)

    This study aims to detect objects quickly and accurately and then start the necessary obstacle avoidance procedure when the uncrewed vessel is at sea. This study uses a multivariate convolutional neural network (CNN) to perform automatic object detection and direction prediction for uncrewed vessels. This study is divided into three parts for processing. The first part of this process uses camera calibration technology to correct the image. Discrete cosine transform (DCT) is then used to detect sea level. Finally, this study uses Kalman filtering and affine transformation to stabilize images taken by uncrewed vessels at sea. The second part of the processing system uses a CNN to detect sea objects automatically. The third part of the process uses the dual-lens camera installed on the vessel to detect the distance and direction of objects at sea. In the experiment, the detection rate can reach more than 91% in this study method. In the experiment on image stabilization, this study’s method can also effectively improve video instability. In the experiment involving the distance and direction of the object, the experimental results show that the distance and direction of the object obtained by this study method have a distance error value of less than 10%, and the prediction results have a good effect no matter whether the object is at a short or long distance. It is hoped that this paper’s method can be applied to the automatic obstacle avoidance of unmanned vessels.