Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Novel Deep Learning-Based Bidirectional Elman Neural Network for Facial Emotion Recognition

    https://doi.org/10.1142/S0218001422520164Cited by:2 (Source: Crossref)

    Facial emotion recognition (FER) is an interesting area of research. It has a wide range of applications, but there is still a deficiency of an accurate approach to provide better results. A novel FER system to maximize classification accuracy has been introduced in this paper. The proposed approach constitutes the following phases: pre-processing, feature extraction, feature selection, and classification. Initially, the images are pre-processed using the extended cascaded filter (ECF) and then the geometric and appearance-based features are extracted. An enhanced battle royale optimization (EBRO) for feature selection has been proposed to select the relevant features and to reduce the dimensionality problem. Then, the classification is carried out using a novel bidirectional Elman neural network (Bi-ENN) that offers high classification results. The proposed Bi-ENN-based emotion classification can accurately discriminate the input features. It enabled the model to predict the labels for classification accurately. The proposed model on evaluations attained an accuracy rate of 98.57% on JAFFE and 98.75% on CK+ datasets.