World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Indoor Positioning and Navigation Model Based on Semantic Grid

    https://doi.org/10.1142/S0218001422550096Cited by:1 (Source: Crossref)

    Traditional GPS positioning technology cannot be used in indoor space. With the development of the new positioning technology and the Internet of things, the indoor mobile object positioning and navigation model have been the focus of the relevant research institutions at home and abroad. Based on this, indoor positioning technology was studied starting from Wi-Fi, RFID, and iBeacon technology in this paper. However, the accuracy of indoor positioning and navigation needs to be further improved. This paper presents a semantic space model based on artificial intelligence technology, through semantic pattern matching, semantic concept extension, semantic reasoning and semantic mapping, and interior semantic localization is realized. The indoor semantic network and indoor grid navigation model are constructed, and the indoor semantic path is modeled from time, location, user, and congestion. At the same time, the improved Term Frequency-Inverse Document Frequency is combined with the Hidden Markov Model to improve the accuracy of matching the stay area with the most likely location to visit and improve the accuracy of semantic annotation. It was found that the research on the indoor positioning and navigation model based on the semantic grid can realize the uniform expression of the complex spatial semantics of the theme, geometry, connectivity, and distance, which can promote the development of indoor positioning and navigation.