World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

DNA Chromatogram Classification Using Entropy-Based Features and Supervised Dimension Reduction Based on Global and Local Pattern Information

    https://doi.org/10.1142/S0218001423560190Cited by:0 (Source: Crossref)

    Gene sequence classification can be seen as a challenging task due to the nonstationary, noisy and nonlinear characteristics of sequential data. The primary goal of this research is to develop a general solution approach for supervised DNA chromatogram (DNAC) classification in the absence of sufficient training data. Today, deep learning comes to the fore with its achievements, however this requires a lot of training data. Finding enough training data can be exceedingly challenging, particularly in the medical area and for rare disorders. In this paper, a novel supervised DNAC classification method is proposed, which combines three techniques to classify hepatitis virus DNA trace files as HBV and HCV. The features that are capable of reflecting the complex-structured sequential data are extracted based on both embedding and spectral entropies. After the supervised dimension reduction step, not only global behavior of the entropy features but also local behavior of the entropy features is taken into account for classification purpose. A memory-based learning, which cannot lose any information coming from training data as its nature, is being used as a classifier. Experimental results show that the proposed method achieves good results that although 19% training data is used, a performance of 92% is obtained.