World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ShNFN: Shepard Neuro-Fuzzy Network for Intrusion Detection in Fog Computing

    https://doi.org/10.1142/S0218001424500186Cited by:0 (Source: Crossref)

    Fog computing is a type of distributed computing that makes data storage and computation closer to the network edge. While fog computing offers numerous advantages, it also introduces several challenges, particularly in terms of security. Intrusion Detection System (IDS) plays a crucial role in securing fog computing environments by monitoring network traffic and system activities for signs of malicious behavior. Several techniques can be employed to enhance intrusion detection in fog computing environments. Accordingly, this paper proposes a Shepard Neuro-Fuzzy Network (ShNFN) for intrusion detection in fog computing. Initially, in the cloud layer, the input data are passed to data transformation to transform the unstructured data into structured form. Here, data transformation is done employing the Box-Cox transformation. Following this, the feature selection is done in terms of information gain and symmetric uncertainty process and it is used to create a relationship between two variables. After that, the data are classified by employing the proposed ShNFN. The ShNFN is attained by fusing two networks, such as Cascade Neuro-Fuzzy Network (Cascade NFN) and Shepard Convolutional Neural Networks (ShCNN). After this, the physical process is executed at the endpoint layer. Finally, intrusion detection is accomplished in the fog layer by the proposed ShNFN method. The performance of the intrusion detection using ShNFN is calculated by the metrics of recall, F-measure and precision. The proposed method achieves the values of 93.3%, 92.5% and 94.8% for recall, F-measure, and precision, respectively.