World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
SPECIAL ISSUE: Parallel Image Analysis: Theory and Applications - Part 1; Edited by L. S. Davis, K. Inoue, M. Nivat, A. Rosenfeld & P. S. P. WangNo Access

TIME-OPTIMAL DIGITAL GEOMETRY ALGORITHMS ON MESHES WITH MULTIPLE BROADCASTING

    https://doi.org/10.1142/S0218001495000225Cited by:0 (Source: Crossref)

    The main contribution of this work is to show that a number of digital geometry problems can be solved elegantly on meshes with multiple broadcasting by using a time-optimal solution to the leftmost one problem as a basic subroutine. Consider a binary image pretiled onto a mesh with multiple broadcasting of size one pixel per processor. Our first contribution is to prove an Ω(n1/6) time lower bound for the problem of deciding whether the image contains at least one black pixel. We then obtain time lower bounds for many other digital geometry problems by reducing this fundamental problem to all the other problems of interest. Specifically, the problems that we address are: detecting whether an image contains at least one black pixel, computing the convex hull of the image, computing the diameter of an image, deciding whether a set of digital points is a digital line, computing the minimum distance between two images, deciding whether two images are linearly separable, computing the perimeter, area and width of a given image. Our second contribution is to show that the time lower bounds obtained are tight by exhibiting simple O(n1/6) time algorithms for these problems. As previously mentioned, an interesting feature of these algorithms is that they use, directly or indirectly, an algorithm for the leftmost one problem recently developed by one of the authors.

    Work supported by NASA under grant NCCI-99, by NSF under grant CCR-9407180, and by NSERC under grant OGPIN007.