World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MULTISENSOR IMAGE RECOGNITION BY NEURAL NETWORKS WITH UNDERSTANDABLE BEHAVIOR

    https://doi.org/10.1142/S0218001496000517Cited by:22 (Source: Crossref)

    Recently, a kind of structured neural networks (SNNs) explicitly devoted to multisensor image recognition and aimed at allowing the interpretation of the "network behavior" was presented in Ref. 1. Experiments reported in Ref. 1 pointed out that SNNs provide a trade-off between recognition accuracy and interpretation of the network behavior. In this paper, the combination of multiple SNNs, each of which has been trained on the same data set, is proposed as a means to improve recognition results, while keeping the possibility of interpreting the network behavior. A simple method for interpreting the "collective behaviors" of such SNN ensembles is described. Such an interpretation method can be used to understand the different kinds of "solutions" learned by the SNNs belonging to an ensemble. In addition, as compared with the interpretation method presented in Ref. 1, it is shown that the knowledge embodied in an SNN can be translated into a set of understandable "recognition rules". Experimental results on the recognition of multisensor remote-sensing images (optical and radar images) are reported in terms of both recognition accuracy and network-behavior interpretation. An additional experiment on a multisource remote-sensing data set is described to show that SNNs can also be effectively used for multisource recognition tasks.