World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
SPECIAL ISSUE: Processing of MR Images of the Human Brain; Edited by H. Pien, W. C. Karl, D. Kennedy, A. Worth and A. WillskyNo Access

Modeling Cortical Sulci with Active Ribbons

    https://doi.org/10.1142/S0218001497000603Cited by:45 (Source: Crossref)

    We propose a method for the 3D segmentation and representation of cortical folds with a special emphasis on the cortical sulci. These cortical structures are represented using "active ribbons". Active ribbons are built from active surfaces, which represent the median surface of a particular sulcus filled by CSF. Sulci modeling is obtained from MRI acquisitions (usually T1 images). The segmentation is performed using an automatic labeling procedure to separate gyri from sulci based on curvature analysis of the different iso-intensity surfaces of the original MRI volume. The outer parts of the sulci are used to initialize the convergence of the active ribbon from the outer parts of the brain to the interior. This procedure has two advantages: first, it permits the labeling of voxels belonging to sulci on the external part of the brain as well as on the inside (which is often the hardest point) and secondly, this segmentation allows 3D visualization of the sulci in the MRI volumetric environment as well as showing the sophisticated shapes of the cortical structures by means of isolated surfaces. Active ribbons can be used to study the complicated shape of the cortical anatomy, to model the variability of these structures in shape and position, to assist nonlinear registrations of human brains by locally controlling the warping procedure, to map brain neurophysiological functions into morphology or even to select the trajectory of an intra-sulci (virtual) endoscope.