World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

REDUCE THE MEMORY BANDWIDTH OF 3D GRAPHICS HARDWARE WITH A NOVEL RASTERIZER

    https://doi.org/10.1142/S0218126602000525Cited by:0 (Source: Crossref)

    Currently, memory bandwidth has become the main bottleneck in graphics system. Reducing the memory access can reduce the power consumption and boost overall system performance. Low power technique is more important for graphics applications on hand-held or mobile device. In this paper, we propose a novel visibility driven rasterizer to reduce the memory access and operations on invisible pixels. It integrates with two-level hierarchical Z-buffer to do visibility driven rasterization. The rasterization scheme is tile-order scan-line based, and the rasterizer can smartly change the tile-size depending on the triangle size. This technique can balance the rasterization loading under different triangles. Moreover, we propose a fast visibility test algorithm to quickly reject a group of pixels within the tile. Simulation results show that the overall bandwidth reduction can be up to 60% under our test images.

    Work supported by the National Science Council of Taiwan, R.O.C., under Grant NSC 90-2218-E-009-035.