World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NOVEL DESIGN AND FPGA IMPLEMENTATION OF DA-RNS FIR FILTERS

    https://doi.org/10.1142/S0218126604001970Cited by:6 (Source: Crossref)

    Field programmable gate array (FPGA)-based digital signal processing has been widely used in multimedia applications. By combining distributed arithmetic (DA) and residue number system (RNS) in such designs, efficient area, speed and power efficiency can be achieved. In this paper, we propose novel techniques for the design and FPGA implementation of DA-RNS finite impulse response (FIR) filters. By introducing a novel low-cost moduli set and its selection method, efficient modulo arithmetic units inside the subfilters are designed. Then, a new residue-to-binary conversion algorithm, a so-called modified DA Chinese remainder theorem, is derived to reduce the modulo operations and provide an efficient residue-to-binary converter suitable to FPGA implementation. Based on these proposed techniques, a seventh-order DA-RNS FIR filter is designed, implemented and tested by using Xilinx FPGA tools. The implementation results show that the proposed filter design consumes only 77% of the power that the existing filter12,13 requires, while maintaining the same speed (throughput).