World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MINING PROTEIN REGULATORY RELATIONSHIPS USING NEURAL NETWORK METHODS FOR EARLY PREDICTION OF SARS

    https://doi.org/10.1142/S0218126609005745Cited by:1 (Source: Crossref)

    This paper proposes to model protein regulation networks associated with severe acute respiratory syndrome (SARS) for early prediction of SARS. In the approach, specific to a patient group, a regulatory network is simulated using a fully-connected neural network and is optimized towards minimizing a novel energy function that is defined as a measure of disagreement between the input and output of the network. The nonlinear version of the network is achieved by applying a sigmoid function. Experimental results show that the proposed approaches can capture regulatory patterns associated with SARS and efficiently implement early prediction of SARS.