SELF-ADAPTIVE LEARNING CLASSIFIER SYSTEM
Abstract
This article introduces a new kind of self-adaptation in discovery mechanism of learning classifier system XCS. Unlike the previous approaches, which incorporate self-adaptive parameters in the representation of an individual, proposed model evolves competitive population of the reduced XCSs, which are able to adapt both classifiers and genetic parameters. The experimental comparisons of self-adaptive mutation rate XCS and standard XCS interacting with 11-bit, 20-bit, and 37-bit multiplexer environment were provided. It has been shown that adapting the mutation rate can give an equivalent or better performance to known good fixed parameter settings, especially for computationally complex tasks. Moreover, the self-adaptive XCS is able to solve the problem of inappropriate for a standard XCS parameters.