World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Unsteady rotating flow of nanofluid with prescribed thermal aspects

    https://doi.org/10.1142/S0129183121500935Cited by:11 (Source: Crossref)

    Motivated by the significant role of nanofluid in pollution cleaning and energy recovery, we decided to explore the unsteady three-dimensional rotating flow of nanofluid driven by the movement of a flat surface with the potencies of prescribed heat distributions. The modeling of the physical model is completed with the help of Buongiorno nanofluid model. Suitable arrangement of similarity variables is implemented to transform the model equations into strongly nonlinear ordinary differential equations. Numerical inspection of the model is made by employing Keller–Box algorithm. Influences of involved parameters on the distributions of heat and mass are discussed graphically, while the potencies of influential parameters on reduced Nusselt and reduced Sherwood numbers are physically discussed through tabular arrangements. It is deduced that increasing the values of Prandtl factor and heat controlling indices diminishes the temperature and concentration distributions, whereas intensification in the amount of rotation factor enhances the temperature as well as concentration distribution. Moreover, negative trends in the amounts of reduced Nusselt and Sherwood numbers are achieved with the escalations in the values of rotation and thermophoresis factors, whereas opposite trend is achieved with the intensification in the choice of Prandtl factor.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!