World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Estimation of Chlorophyll Concentration Index at Leaves using Artificial Neural Networks

    https://doi.org/10.1142/S0218126617500268Cited by:10 (Source: Crossref)

    In this study, the effectiveness of an SPAD-502 portable chlorophyll (Chl) meter was evaluated for estimating the Chl contents in leaves of some medicinal and aromatic plants. To predict the individual chlorophyll concentration indexes of St. John’s wort (Hypericum perforatum L.), mint (Mentha angustifolia L.), melissa (Melissa officinalis L.), thyme (Thymus sp.), and echinacea (Echinacea purpurea L.), models were developed using SPAD value. Multi-layer perceptron (MLP), adaptive neuro fuzzy inference system (ANFIS), and general regression neural network (GRNN) were used for determining the chlorophyll concentration indexes.

    This paper was recommended by Regional Editor Masakazu Sengoku.